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Abstract 
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Executive Summary 

This report describes the need, business case, and implementation plan for an autonomous vineyard crop 
harvesting robot capstone project, VineBot.  

Background 

Our team is a composed of senior electrical engineering students studying at the British Columbia Institute 
of Technology. Our combined past experiences include working with industrial robots, machine vision, 
mechanical design and fabrication, and rapid prototyping. 

This document is mainly intended for our stakeholders including our capstone mentor Dr. Craig Hennessey, 
our capstone coordinator Dr. Jeff Bloemink, BCITs School of Energy research committee, and external 
industry partners who would be our effective end-users.  

Several key forces drove this project including the lack of available agricultural labour and demand for 
automation, the growing Canadian wine export market and potential growth of the agriculture sector, and 
the absence of precision grape picking systems on the market. 

Canada is home to 720 wineries and vineyards [1]. A total of $7.2 billion worth of wine was sold in Canada 
in 2012, with a gain of 3.1% from the previous year. Canadian winery global exports totaled $145 million 
dollars in 2017 The forecasted market value for 2018 is projected to be $10.28 billion.  

“In 1921, agriculture was the single most common occupation,” and throughout the years “farms have 
become more specialized and the average farm size has increased [2].” However, with the projected 
market growth in agriculture, labour shortages have become of great concern. According to the California 
Farm Bureau Federation survey, “55 percent of responding farmers had experienced employee shortages.” 
[3] That study also outlined that “[problems] have been more acute among farmers whose crops require 
the most intensive hand labour, such as tree fruits and grapes.” When asked what actions they have taken 
in response to employee shortages, one- third of respondents said they used mechanization if available; 
another 29% attempted or investigated mechanization. 

According to Agriculture and Agri-Food Canada, most studies of the impact of climate change suggest that 
most regions of Canada are projected to warm during the next 60 years. Despite the known challenges 
that come with climate change such as drought and storm intensity, there are opportunities for the 
Canadian agriculture industry. Canada is a high latitude country, which brings more pronounced warming 
than the global average. This could lead to expansion of the growing season to go along with milder and 
shorter winters like those seen in Arizona and California [4]. Without the available labour pool, this 
potential for climate-change induced growth in Canadian agriculture could be squandered. 

Project Objectives & Deliverables 

Working in consultation with local wine producers (Okanagan Valley, Lower Mainland) was an objective of 
this project. Their engagement with our engineering team and feedback on a minimum viable product was 
and still proves to be very valuable. 

In terms of more technical requirements, the main objective for our group was to design and implement a 
proof of concept autonomous vehicle capable of navigating a vineyard to pick grapes while also avoiding 
obstacles. We were able to deliver this objective. 

Another objective was to become proficient was use of machine learning for image processing, 3D 
cameras, GPU processing, LiDAR processing, and robot motion and path planning. 

By the end of the project, the following proposed deliverables were completed: 

1. A proof of concept autonomous grape picking vehicle 
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2. A final report documenting our project by the end of the project term 
3. An organized git repository with extended project documentation 
4. A live demonstration of the project for the technology expo including signage and literature 

High-level Overview 

Our project is meant to be an autonomous grape harvesting system. To create the autonomous system, we 
decided to split the task into three separate systems:  

1. The harvesting system handles everything involving grape detection and picking, including the 
vision and robotics required 

2. The navigation system handles everything involving mapping and position estimation, and also path 
planning to route from point A to point B around a vineyard 

3. The mission planning system handles the vehicle control, as well as allowing and disallowing when 
the vehicle is able to enter harvesting and mobile states 

Planning 

To aid in the development of the project, as well as regulate the amount of work being carried out, a set of 
milestone goals were created. The project was divided up into 4 milestones: 

Milestone 1 (January 29th) – Visual Camera, Machine Learning Test, and LiDAR Processing Complete  

Milestone 2 (April 25th) – 3D Camera, NVIDIA Board Integration, and SLAM Complete 

Milestone 3 (May 7th) – Path Following, Stem Cutting, Integration, Verification, and Tech Expo Preparations 
Complete 

Milestone 4 (May 19th) – Documentation Complete 

 

Project Implementation and Results 

The design and implementation of our project was split into sections according to the project plan. Such 
sections include development into the vision system utilizing the NVIDIA Jetson TX2, working on robotic 
control for the project, creating mechanical parts and assemblies for the project and establishing 
algorithms for position estimation and mapping for navigational purposes. 

From a high-level view, the different parts of the project were all connected via a software motion 
planning module which integrated the navigation systems and the harvesting systems. These modules 
communicated using an inter-process communication standard made up of string-based commands like 
“ready” and “allow.” 

Investigation into effective vision systems for grape detection showed that training a machine learning 
model using the Darknet framework provided superior and robust results compared to a traditional 
computer vision-based approach. This trained model in combination with the NVIDIA Jetson TX2 
development board provided an effective solution that could complete 7 inferences a second when 
detecting grape clusters. 

When developing the robotic control systems using a uArm Swift Pro hobbyist robot arm, various flaws 
including invalid movement ranges and failure under dynamic load were uncovered and managed 
appropriately by assigning boundaries and limiting the payload. The result was an effective 2.5D visual 
servoing feedback control system that allowed the arm to home in on a target for picking. 

Various mechanical design tasks were completed including development of a lightweight camera mount, a 
cuttable and disposable PLA stem system, and several iterations of stem cutting robot end effectors. 
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Cutting mechanisms using solenoids or the existing grip strength of the robot gripper were rejected in 
favour of a separate servomotor powered cutter. This mechanism in combination with the gripping 
position of the grape cluster proved to be an effective harvesting system.  

Several goals were achieved when developing the navigation systems including: processing and handling of 
LIDAR data, statistical identification of vineyard features, persistent map generation using the EKF SLAM 
library, and some explorations into model predictive control for motion planning and path following. The 
majority of these tests were successful but the precision of the path following system was not great 
enough to position the vehicle adequately for harvesting. As such, a simple odometry based approach was 
used for demonstrations. 

Conclusions and Recommendations 

The overwhelming majority of the project goals and have been achieved and the results of testing are 
encouraging. There are several paths that may be pursued by our team at this point.  

1. We have the option to continue on with developing a larger scale prototype to be tested in an 
Okanagan vineyard.  

2. There is still further opportunity in developing markets like cannabis where significant work in 
automation has yet to happen. 

Either path involves generating interest and raising capital to invest in full scale prototypes using industrial 
quality components. Thankfully, this project has produced a significant amount of media that may be used 
in this manner. 
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1 Introduction 
This report describes the design and potential market for an autonomous wine crop harvesting robot, 
VineBot. It is addressed towards the staff of the BCIT Electrical Engineering faculty, the BCIT School of 
Energy and our project mentor, Craig Hennessey.  

Wine grape harvesting can be a rigorous, time-consuming, and labour-intensive task which has already 
begun to be automated. There is also a social push towards organic and sustainably produced products 
and produce, which could be an agricultural automation opportunity. Our senior engineering capstone 
group aimed to improve on current systems by developing a robotic vehicle that can harvest grape crops 
autonomously and selectively. This robotic vehicle is equipped to navigate a vineyard without the need for 
human intervention, work during all times of the day, and successfully detect and harvest wine grape 
crops. The robotic vehicle was able to accomplish these tasks by using cutting-edge vision technologies, 
robotics, and various engineering methods we’ve picked up at BCIT. 

This final report will outline what we were able to accomplish with our project, and how we carried out the 
proposed idea. We will explore technical aspects of the project in-depth and will discuss what did and 
didn’t work for us, in the hopes that future capstone groups can learn from our successes and failures. 

In the following sections of this report, topics such as the motivation for our project will be introduced, 
including end-users and stakeholders, the application and need for our project and key literature items 
which we feel provide an important insight into the project. Some background information based on the 
agricultural industry will then be discussed, followed by and the state of the art with respect to wine grape 
harvesting. Previous work completed on the project will also be introduced and explored in more detail. 
The scope of our work for this project including objectives, deliverables, and project execution follow, with 
short detour regarding the external consultations we’ve received. Then, in the final sections of our report, 
we will include some project specifics which encompass a high-level overview of the project, a record 
pertaining to the design and implementation of the project, and the final results including testing and 
verification information. A summary will then conclude the report, including a short discussion of the 
results, unintended applications of our technology, and future work to be done. 
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2 Background and Motivation 
Briefly put, the main objective of our project was to develop an autonomous vehicle capable of navigating 
a vineyard and picking grapes. This was a worthwhile objective because grape picking is labour-intensive, 
time consuming, costly, and we have identified a good business case. To start, we will identify end-users 
and stakeholders in the project. The application and need for VineBot are also addressed, including 
information regarding the wine industry in Canada, crop migration, and agricultural labour.  

2.1 End-Users and Stakeholders  

The end users and stakeholders of this project can be divided into two categories: internal and external. 
The internal stakeholders are comprised of ourselves and various BCIT faculty. Our external stakeholders 
are the end users and industry contacts who have been consulted for this project. 

2.1.1 Internal Stakeholders 

This capstone project was a continuation of a BCIT School of Energy (SoE) seed-funded project intended to 
investigate robotic agriculture management. Our previous achievements and the success of the capstone 
project will benefit the SoE in several ways. The more we achieve with this project, the more value we 
bring to the SoE investment. Due to its physically tangible nature, our project can be easily used for 
marketing purposes and promotion of the technical activities engaged in at BCIT. 

We considered our mentor Dr. Craig Hennessey to be one of our key internal stakeholders. Craig had been 
instrumental in the proposal of the original SoE project and had agreed to be our mentor under the 
condition that we do our best to successfully achieve our design objectives. Craig has also been a 
proponent for a robotics-based senior design elective for the B.Eng. Electrical program, which we 
understand to be implemented next year. It is hopeful that the technology we explored may be helpful in 
implementing the course. 

Our capstone coordinator, Dr. Jeff Bloemink was another internal stakeholder. His goal was to provide us 
with the knowledge and tools to execute a successful capstone project, which he did to the best of his 
ability.  

Finally, the three members of the capstone team were significant stakeholders in this project. We were 
poised to gain tremendous amounts of technical knowledge and design practice.  Our project and 
teamwork in some cases was leveraged in our collective seek for employment. Note, more information 
about our capstone team can be found in the Appendix D: Resumes section of this report. 

2.1.2 External Stakeholders 

Our first intended end users are employees of small and medium sized vineyards. Larger vineyards can 
absorb the cost of product lost due to the violent and indiscriminate techniques of current mechanized 
grape picking. We are hoping to create a proof of concept for what can be an accurate and efficient 
method of picking for smaller enterprises. 

We have several industry contacts we consulted and are currently in contact with. The first was Graeme 
Duncan of Naramata BC. Graeme owns and produces around 6 acres of Chardonnay grapes on his family 
owned property in the Okanagan. We hope to scale up our capstone project, and test on his personal 
vineyard with his permission. 

The second was Kim Hoath, also of Naramata. Kim is a member of the International Sommeliers Guild 
(ISG), and an employee of BC VQA in Penticton, BC. The International Sommelier Guild is the world’s 
leading licensed provider of Sommelier education. Established in 1982, the ISG has grown from its North 
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American roots to become a truly global provider of Sommelier education and certification. BC VQA stands 
for “British Columbia Vintners Quality Alliance”. The BC VQA program is an “appellation of origin” system, 
like the AOC and DOC systems utilized in France and Italy respectively. The BC VQA system guarantees 
origin and ensures that qualifying wines meet certain minimum quality requirements. 

2.2 Application and Need 

Agriculture is a large part of the Canadian and American Economy. With the increasing opportunities in 
Canada for agriculture due to pending climate change induced crop migration in the near future, new 
methods for harvesting and monitoring crops will need to be developed [5]. 

2.2.1 Wine Industry 

Canada is home to 720 wineries and vineyards [1]. The wine industry in Canada occupies a large share of in 
the agricultural market and continues to grow. A total of $7.2 billion worth of wine was sold in Canada in 
2012, with a gain of 3.1% from the previous year and almost all provinces reporting gains [6]. $992 million 
of this was Canadian domestic shipments, and $61.8 million was exports [7]. This reflects well on the 
demand for Canadian wine. As for the current market, Figure 1 shows the projected growth of wine 
industry [8].  

 
Figure 1 – Projected Market Value of Canadian Wine Industry (Courtesy of Statista) 

Canadian winery global exports totaled $145 million dollars in 2017, with growth in the years leading up 
[9]. Wine exports are currently less than wine imports, but this could one day due to crop migration, and 
increased growth in the local wine industry. 

As British Columbians, we have a vested interest in our provincial successes. Research of the industry from 
2012 indicates that most wine-making establishments operate in British Columbia and Ontario. At the 
time, the industry employed over 3,700 people [10]. As the wine industry continues to grow, it is expected 
that employment will also increase. Automated solutions could be the answer to filling these new roles. 

2.2.2 Labour 

“In 1921, agriculture was the single most common occupation,” and throughout the years “farms have 
become more specialized and the average farm size has increased [2].” However, with the projected 
market growth in agriculture, labour shortages have become of great concern. “In 2014, 26,400 jobs went 
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unfilled in Canada’s agriculture sector [11].” The sector lost $1.5 billion in revenue which continues to 
impact the sector today [11]. Future growth of the industry is stunted, and expansion plans have been 
delayed due to growing concerns that labour will not be available as readily. These shortages exist even 
with the Canadian government’s Temporary Foreign Worker (TFW) program that brings workers from 
Mexico for periods of 8 months [12]. Many wineries take advantage of this program but are required to 
pay for round-trip travel and provide accommodation for the workers. These are costs that could be 
reduced with automated picking robots. 

The labour shortage isn’t a problem only in Canada. According to the California Farm Bureau Federation 
survey, “55 percent of responding farmers had experienced employee shortages [3].” That study also 
outlined that “[problems] have been more acute among farmers whose crops require the most intensive 
hand labour, such as tree fruits and grapes.” When asked what actions they have taken in response to 
employee shortages, one- third of respondents said they used mechanization if available; another 29 
percent attempted or investigated mechanization. This provides ample opportunity for automation to fill 
the need in other sectors of agriculture, not just wine. 

2.2.3 Crop Migration 

 Crop migration refers to the drift in growing location of crops due to either an increase or decrease in 
suitability of growing in that region. The US has already seen northern migration of some crops such as 
soybeans and corn. This brings the question of whether agricultural regions could move North into Canada. 
According to Agriculture and Agri-Food Canada, most studies of the impact of climate change suggest that 
most regions of Canada are projected to warm during the next 60 years.  

Despite the known challenges that come with climate change such as drought and storm intensity, there 
are opportunities for the Canadian agriculture industry. Canada is a high latitude country, which brings 
more pronounced warming than the global average. This could lead to expansion of the growing season to 
go along with milder and shorter winters like those seen in Arizona and California [4]. Many areas of the 
country that are typically thought of as frigid and inhospitable for growing could soon turn into usable 
agricultural land [13]. Climate change may also improve soil quality by enhancing carbon sequestration. 

Without the available labour pool, this potential for climate-change induced growth in Canadian 
agriculture could be squandered. This is another opportunity for agricultural automation to thrive. 

2.3 Key Literature Identified 

This section summarizes key resources that make up the research supporting the idea of creating a grape-
picking robot system. This research involved looking into areas like wine industry statistics, consultation 
with outside partners, current solutions, similar solutions, previous patents, safety standards, 
technological resources, and applicability of previous work we have completed in vineyard automation. 
The short answer is that a precision grape picking system does not exist yet. This section will show how our 
research supports our initiative to create one.  

2.3.1 Climate Change and Wine Industry Challenges 

Some of the inspiration for this project comes from the opportunities and challenges faced due to climate 
change and wine industry trends. Opportunities include increase in useable land and large exports of 
Canadian wine. One of the many challenges faced is labour shortage even with government programs. 

Our report from Agriculture and Agri-food Canada [4] outlines the possible changes Canada could see in 
the future with regard to climate change induced increase in farmable land. This report describes the 
increase in farmable Canadian land that could accompany global warming due to shorter winter seasons. It 
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also details the drought conditions and high storm intensity that we could face if warming increases even 
further. 

Statistics Canada has a report [14] which provides insight into the Canadian wine industry, which includes 
information regarding exports and local sales. Similarly, an excerpt from a Statistics Canada report yields 
the sales of alcohol in different categories (Wine, Beer, Spritzers) [6]. Wine makes up 32% of the alcohol 
market in Canada and grew 3.2% from 2017. 

According to a report from the Canadian Agricultural Human Resource Council, in 2014, 26,400 jobs went 
unfilled in Canada’s agriculture sector [11].” The sector lost $1.5 billion in revenue which continues to 
impact the sector today [11]. Future growth of the industry is stunted, and expansion plans have been 
delayed due to growing concerns that labour will not be available as readily. These shortages exist even 
with the Canadian government’s Temporary Foreign Worker (TFW) program that brings workers from 
Mexico for periods of 8 months [12]. Many wineries take advantage of this program but are required to 
pay for round-trip travel and provide accommodation for the workers. These are costs that could be 
reduced with automated picking robots. 

2.3.2 Robot Safety 

A relevant standard that didn’t apply to our project due to application specifics is CAN/CSA-Z434-14 
Industrial robots and robot systems. While we didn’t have access to this standard, the Canadian adoption 
of ISO 10218, it covers safety requirements for automated robot systems in a variety of industries. We 
were able to deduce that this didn’t include autonomous agriculture, which may be due to the industry 
being too new to have completely developed safety standards. Some of the main safety features outlined 
in the standard include barriers for safe operation such that human interaction with machinery be very 
limited, and in the case of interaction, safety measures be in place to prevent injury.   

Since what we created is a mobile robotic platform, stationary robotic standards were not applicable. Also, 
since our robotics were slightly more comparable to commercial use than industrial use, different 
considerations were made with respect to safety and safe operation. It has been difficult to locate safety 
standards for our specific case; however, we did our best to extract relevant information from the 
CAN/CSA-Z434-14 industrial standard, in combination with our own set standards to ensure safe operation 
and use.  

2.3.3 Grape Detection Work 

Since most grape picking systems are lacking in “intelligence”, a smarter method is sought after. Using 
computers, many have been able to come up with different approaches to identify grapes using image 
processing.  

One method for detecting grape clusters, from a paper titled “Yield Estimation in Vineyards by Visual 
Grape Detection” [15], outlines the use of a complex algorithm for detection in addition to a sideways 
camera and a lighting source. The algorithm detects “potential [grape] locations with a radial symmetry 
transform” to start, then identifies “the potential locations that have similar appearance to grape berries”, 
and then finally “[groups] neighboring [grapes] into clusters.” The problem with this algorithm is that it is 
very un-intuitive and requires a semi-controlled lighting environment to work effectively. 

Another method for grape detection comes from a paper titled “Robust Grape Cluster Detection in a 
Vineyard by Combining the AdaBoost Framework and Multiple Color Components” [16], which describes 
the use of a cheap camera, advanced image processing techniques, and machine learning for grape 
detection. The method uses a dataset along with an extraction of the “effective color components for 
grape clusters”, and then “[constructs a] linear classification model”. This is a good method since it’s use of 
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the AdaBoost machine learning framework makes it robust, however the use of color components and 
morphological filtering are not very clearly described. 

The last method that will be discussed for grape detection, from a paper titled “Automatic detection of 
bunches of grapes in natural environment from color images” [17], is a method which claims to use a 
simple color thresholding methodology for detection. The method is impressively able to succeed in 
detection with “97% and 91% correct classifications for red and white grapes, respectively”, and even is 
able to “[calculate] the location of the bunch stem [for a group of grapes.]” However, where this method 
falls short is that it is heavily dependent on color, is only able to detect one bunch of grapes per image and 
is to be used at night to “avoid any spurious reflections or bad illumination during sunny day time”. 

Of all the papers discussed above, a common problem arises. The complex image processing required for 
almost all of the methods above would be very difficult to run on an embedded platform. And if they were 
to run, real time detection would not be likely or would require advanced hardware. 

Darknet/YOLO 

A technology for state-of-the art object recognition and detection, dubbed YOLO (you only look once) by 
its creator, Joseph Redmon of the University of Washington, is a classification and localization method in 
which a neural network is applied to a single, full sized image, instead of prior methods which apply the 
network to an image at different scales and locations. To implement YOLO, Darknet [18], “an open source 
neural network [software] written in C and CUDA” is used. For our purposes, we used Darkflow, a wrapper 
that works on Google’s TensorFlow open source software library. TensorFlow is an application used 
commonly for training neural networks.  

The use of Darkflow/Darknet with YOLO over other technologies was advantageous because it was created 
specifically for real time object detection and has a large community. Furthermore, YOLO is constantly 
being developed to increase detection speeds and accuracy. 

Google Open Images V4 

To create accurate models in machine learning, a large dataset of images and annotations is required. 
Most research papers we’ve come across that have use machine learning to identify objects have used 
custom datasets, which requires time to manually annotate. These custom datasets may also be bias 
towards what is being tested (e.g. similar lighting conditions, environment, etc.). We decided that it would 
be the best use of our time and resources to use a pre-annotated dataset. 

The Google Open Images database was a resource which we used to train our grape detection model on, 
due to its size and variation in images. The dataset can be downloaded, which includes a plethora of 
classifiers, however we were only interested in the grape classifier. This dataset was beneficial to the 
robustness of our work because the successful use of it to train a model that detects our simulated 
vineyard grapes was an indication of high probability that the model will also detect grapes in other 
environments. 

In terms of the dataset annotation, formatting of bounding boxes is of importance. Since the program in 
which we planned to use the dataset required a certain annotation format, we needed to modify the set. 
The Google Open Images dataset annotation format is shown below in Figure 2, while the YOLO 
annotation format is shown in Figure 3. 

  



BCIT ELEX 7890 Capstone Project Completion: Final Report  Vine ‘Em And Dine ’Em: VineBot 

 7 of 66 2019-05-22 

 

 
Figure 2 – Google Open Images Annotation Format 

 
Figure 3 - YOLO Annotation Format 

2.3.4 Navigation and Mobility 

Any robotic system intended for use in a vineyard must be able to traverse the property and overcome 
challenges like ruts, holes, ditches, loose branches, and mud. Many of the common driving platforms used 
in vineyard automation research are well outside the budget of a capstone project. Thankfully, lessons can 
be learned from these platforms and implemented at a smaller scale that better fits the Capstone 
restraints. 

Once a driving platform has been chosen, it still needs to be guided through the vineyard by some sort of 
navigation system. This section includes a description of some previous research completed for BCITs 
School of Energy that is applicable to the topic of navigation. 

Husky UGV 

For projects similar to ours, others have used ready-made autonomous vehicles such as the Husky UGV, 
from Clearpath Robotics [19]. It is a versatile platform that is built with ruggedness in mind and has been 
used for agricultural applications previously. In fact, researchers at University of California used the Husky 
UGV for “a robotic system to help vintners manage their water systems, and implement precision irrigation 
across the vineyard” [20]. The downside to this platform is that it is very expensive, especially with our 
budget in consideration. However, if our budget was not a concern, and we were going to take our project 
to market, then this would be a platform to build around. One defining characteristic of this vehicle is that 
it has a separate electric motor for each wheel. This gives the vehicle four-wheel-drive capability and the 
ability to make tight turns in confined spaces. 

 
Figure 4 – Husky UGV agriculture research platform 

<Classifier [String]> <Xmin [Abs Float]> <Xmax [Abs Float]> <Ymin [Abs Float]> <Ymax [Abs Float]> 

<Classifier [Integer]> <Xcenter [Rel Float]> <Ycenter [Rel Float]> <Width [Rel Float]> <Height [Rel Float]> 
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Autonomous Robot Navigation Algorithms 

A repository of robotics algorithms for autonomous navigation posted by Atsushi Sakai, an autonomous 
navigation system engineer from Japan. He was nice enough to include documentation, which clearly 
communicates the basic idea of each algorithm and provides visualizations to demonstrate their use [21]. 
The repository outlines methods and test code regarding a plethora of methods for autonomous 
navigation; Some of which we are interested in using for our project. 

 
Figure 5 – Model Predictive Speed and Steering Control from the Atsushi Sakai Repository 

2.4 State of the Art 

This section of the report outlines the current state of the art for grape picking of both table and wine 
varieties. It has been spread up into current grape picking systems, current precision fruit picking systems, 
and fruit picking patents.  

2.4.1 Current Grape Picking Systems 

For some vineyards, hand picking of grapes is still preferred over mechanized systems due to the higher 
picking quality. Some larger vineyards have been experiencing labour shortages and have moved to 
mechanized systems. One example is a Washington vineyard’s [22] use of the Optimum system (Figure 6). 
The machine is built by the Pellenc Group, a company that has been manufacturing agricultural tools since 
1973.  

Figure 6 – Pellenc Group Optimum Harvester (400,000 USD) 
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This $400,000 USD harvesting system indiscriminately scrapes a series of arms across the plants and 
knocks the berries into a sorting system that also filters out stems and other materials other than grapes 
(MOG). As seen in the above picture, there is plenty of potential for damage to the grapes and they must 
be used quickly. The yield is high, but the quality is low. 

2.4.2 Current Precision Fruit Picking Systems 

Some of the common precision picked fruits include bell peppers, strawberries, and apples. A commonality 
can be seen here in that these are all general brightly colored fruits that are distinct from the canopy and 
leaves around them making them easier to detect than green grapes on a green canopy. 

SWEEPER 

One solution that stood out in our research, is the Sweeper robot (Figure 7). This is a multi-institute project 
funded by the EU Horizon 2020 research and innovation program [23]. 
The project is the result of 4 million EUR being allocated to various universities and businesses for 
development of a picking solution tailored for use specifically in greenhouses. It uses depth cameras and 
detection models trained specifically for the pepper plants to identify ripe peppers. The robot is confined 
to tracks that run between rows of plants. 

The Horizon 2020 project website contains a repository of all the papers submitted by each agency, and 
our selected paper outlines development and testing conditions used for their proof of concept. This paper 
gave us the idea of training a machine learning model to detect the grape clusters. 

AGROBOT 

Strawberry harvesting can currently be completed by the AGROBOT, a $100,000 USD robot that requires 
uniform row spacing to conduct picking operations (Figure 8). The vehicle may be equipped with up to 24 
small robot arms that pick individual berries. 

Figure 7 – EU Funded SWEEPER Bell Pepper Picking Robot (4,000,000 EUR) 
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Abundant Robotics 

Google Ventures has taken the lead in investing in Silicon Valley based start-up, Abundant Robotics, to the 
tune of $10,000,000 USD [24]. This budding company is demonstrating their suction-based apple picking 
system. The system (Figure 9), which is essentially a horizontal mounted delta robot, can pick apples from 
the trees with minimal bruising or other damage. 

 
Figure 9 – Abundant Robotics Apple Harvesting System 

Figure 8 – AGROBOT Strawberry Picker 
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2.4.3 Fruit Picking Patents 

A 2005 patent awarded to Vision Robotics outlines a Robot Mechanical Picker System and Method [25]. 
The patent describes an autonomous robot that makes its way through crops, maps fruit locations, and 
plans a picking strategy for its harvesting counterpart. The patent outlines the fact that harvesting with the 
same vehicle that does the mapping may be too computationally intensive. Also, machine learning was not 
as accessible for object training and recognition as it is today due to the lack of knowledge, and hardware 
acceleration. 14 years since the patent has been filed, technology has developed to the point where it is 
now feasible for this to be done. 

One of the technologies described in this patent involves the use of a stereoscopic camera. Most of the 
stereoscopic 3D cameras on the market right now do not contain enough precision to locate the stem of 
the grape cluster accurately enough to grasp it. 

2.5 SOE Previous Work 

Another vineyard management project was proposed originally from the School of Energy (SoE). A main 
objective of the SoE project was to streamline data collection from the field, including the use of remote 
imaging. This imaging could be used to estimate crop yields and assess plant health without human 
intervention to increase the operational efficiency of a vineyard. 

Figure 10 – Figures from Vision Robotics 2005 Patent 
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2.5.1 Actobotics Nomad 

Many of the mobility requirements of a grape picking solution are actually solved by the platform chosen 
in the SoE project. Due to the software-rooted nature of the original project, a kit-built vehicle platform 
was utilized to minimize time spent on mechanical design. The Actobotics Nomad platform (Figure 11) was 
chosen for its cost effective yet rugged nature. The vehicle dimensions are 15” long, 9” high, with a 
wheelbase of 13”. 

The vehicle structure is constructed from a rigid aluminum channels, planetary gear hand drill motors, a 
chassis with cut-outs for various accessories, and an internal cavity for circuitry. The vehicle is equipped 
with rubber tires intended for outdoor all-terrain use. Just like the Husky UGV described earlier, this 
vehicle has a dedicated motor attached to each wheel. 

2.5.2 LiDAR 

Navigation of the vineyard involves driving down rows of grape plants and knowing where trellis posts and 
other objects are so that vehicle can avoid obstacles and mitigate the risk of collision. To aid in navigation, 
a rotary LiDAR sensor was used along with an inertial measurement unit (IMU). 

Figure 11 – Nomad Kit-Based Robotics Platform 

Figure 12 – SoE VineBot Vehicle Prototype 
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A two-dimensional rotary Light Detection and Ranging (LiDAR) unit is used to survey the immediate area 
around the vehicle for obstacles. This produces a point-cloud map (Figure 13) with the origin defined as 
the location of the sensor. The point-cloud by itself is simply a series of data-points in a cartesian 
coordinate system. 

To retrieve meaningful information from this data, associative clustering algorithms are applied to divide 
the dataset into groups that follow the natural structure of the data [26]. Through this process, the data-
points for each observed physical object such as surrounding structures, vine trunks, and trellis posts, are 
divided into individual clusters. By applying a series of statistical analysis algorithms to each cluster, 
clusters can be classified as erroneous data-points, surrounding structures, and vineyard structures. 
Objects other than the grape vines and related trellis posts can be removed from the data-set to simplify 
further processing [27]. 

 
Figure 13 – Raw Lidar Data 

A reasonable estimate of the location and orientation of the vine rows around the vehicle can be produced 
through further statistical analysis of the clusters. By analyzing the distances and angles between each 
cluster representing a grape vine or trellis post and applying a series of probability distribution functions 
(Figure 14) to these metrics, an educated guess can be made as to the position of the vine rows. In 
addition, a probability of accuracy can be associated with each resulting vine row, as seen in Figure 15. 
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Figure 14 – Confidence Curves for Statistical Analysis 

 
Figure 15 – Computed Vineyard Rows 

From the data shown in Figure 13, it appears that no meaningful patterns can be extracted. To give 
meaning to data points, clustering techniques found from a third-party source were used with 
modification for our purposes [26]. In terms of statistical quantification, confidence intervals show in 
Figure 14 provide insight into how linear rows were filtered from the data set [26]. 

2.5.3 Inertial Measurement Unit 

The SoE vehicle contains an Inertial Measurement Unit (IMU), comprised of a gyroscope, accelerometer, 
and magnetometer. In order to leave the navigation system with the possibility of GPS use in the future, 
we have developed an IMU server on the device that can be accessed by any software being developed. 
This server allows access to the vehicle’s compass bearing after adjustment for local variation 
(declination), as well as access to the acceleration forces being felt by the vehicle with respect to North as 
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seen on a GPS. The server also provides information as to how far the vehicle is tilted in any direction and 
could be used to avoid situations where the vehicle could overturn. 
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3 Scope of Work 
To better understand how we plan on providing value to vineyard owners, the scope of our work needs to 
be defined. Some objectives and goals associated with this project will be introduced, including a more 
general strategic plan which will help outline steer our group in the right direction, and an operational plan 
which will cover the implementation of our goals. The plan can be broken up into key design activities.  

3.1 Recommended Long Term Objectives 

Based on feedback and objectives outlined by the SoE, and through discussions with industry partnerships, 
some recommended objectives have been drawn up. These objectives include both general goals for the 
project, but also delve into more technical ambitions. 

Listed below are some long-term objectives of the project, with more information provided below in the 
respective sections. 

1. Support Canadian agriculture, and facilitate competition with other large agricultural regions 
2. Help Facilitate in creating a robotics design elective for B. Eng. students at BCIT 
3. Implement methods to ensure adequate vehicular operation in low-light conditions 
4. Use or modification of mechanical end-effector for selectively picking grape clusters 
5. Develop a minimum viable product (MVP) 

3.1.1 General Goals 

A basic goal of this project is to support Canadian agriculture. The Canadian agricultural industry can 
benefit greatly from the innovative works of engineering students, by ways of a creative-destruction 
culture. This also ties in another goal, which is to facilitate competition with California, Europe and Japan 
agriculturally, since British Columbia is an agricultural competitor of these regions.  

Lastly, having this project help facilitate in creating a robotics design elective for B.Eng. students at BCIT is 
also an outcome we hope to achieve. It is hopeful that the technology we explore may be helpful in 
implementing the course. 

3.1.2 Technical Objectives 

Various vision and lighting methods with the help of image processing should make the vehicle adequate 
for operation in low-light conditions, making it a relevant technical objective. Another technical objective 
for the vehicle is to be able to make use of a mechanical end-effector for selectively picking entire grape 
clusters, without the need for human intervention. 

3.1.3 Future Vision 

For the VineBot project, we hope to expand on previous work to develop an MVP VineBot all the way up 
until the end of our project term in May. If we finish the MVP VineBot early, there are some optional 
objectives which we plan on accomplishing.  

If time permits, and a product created by our team is deemed to be adequate, The DARPA Grand Challenge 
Winter may be a competition that our project could be entered in. Another optional objective would be to 
experiment with lighting. Since a large chunk of our project involves image recognition, further research 
into lighting for computer vision, and image processing techniques that can be used to help reduce the 
effects of bad lighting could also be explored. Due to the modular design of the project, we may also want 
to investigate selectively harvesting other types of produce which are hard to mechanically pick, including 
blueberries and cannabis. The modular design philosophy may require partial redesign of some 
components but would bring added value.  
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3.2 Capstone Project Objectives 

Working in consultation with local wine producers (Okanagan Valley, Lower Mainland) is an objective of 
this project. Their engagement with our engineering team and feedback on the MVP would be very 
valuable. 

In terms of more technical requirements, the main objective for our group is to design and implement a 
proof of concept autonomous vehicle capable of navigating a vineyard to pick grapes while also avoiding 
obstacles.  

Another objective is to become proficient in use of machine learning for image processing, 3D cameras, 
GPU processing, LiDAR processing, and robot motion and path planning. 

A final objective is to have a professional demonstration of our project ready for the year end project 
exposition, with the goal of showcasing our project to students, public, faculty, and prospective employers. 

3.3 Project Execution and Deliverables 

At the start of the project, we would’ve liked to have the following deliverables by the end of the project: 

1. A proof of concept autonomous grape picking vehicle 
2. A final report documenting our project by the end of the project term 
3. An organized git repository with extended project documentation 
4. A live demonstration of the project for the technology expo including signage and literature 

However, by the end of the project, we realized how easy it was to stray away from the project plan in 
terms of execution. We were able to complete the following deliverables: 

1. A proof of concept autonomous grape picking vehicle capable of picking artificial grapes off an 
artificial grape vine 

2. A final report documenting our project including changes from the initial proposal, and 
methodologies which did and didn’t work out 

3. An organized set of git repositories with instructions on operation of the modules they contain 
4. A live demonstration of the project for the technology expo, and a recorded demonstration to be 

used by our mentor Craig Hennessey for his new robotics course 
5. A working system that can repurposed for a B. Eng. robotics design elective at BCIT 

We were able to create a proof of concept vehicular grape picking robot, as well as some artificial grape 
vines, and some artificial stems to go along. We needed to slightly alter the original work plan to complete 
these tasks, since creating artificial stems wasn’t originally included in the project scope. 

We also were able to document our methods throughout the project, making the task of writing this 
report easier. This is somewhat due to the work we put into milestone meeting reports, which were 
helpful for keeping us on track. We did however deviate from the original plan of having five milestone 
meetings, by only having three. 

A pair of GitHub repositories were created at the start of the term and were used to backup any 
information we felt was important to keep, regarding the project. This includes raw data which we used 
and a large code base that contains all of the code for our project, including some unused code which can 
be used in the future for tasks such as GPS integration. 

At the technology exposition, we were able to supply a captivating presentation on our accomplishments 
this term using a poster and an embedded video, with a live demonstration of grapes being picking off an 
artificial vine. After the expo, we filmed a demonstration of the project for future purposes and included it 
in the video we developed for the exposition. 
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Lastly, we were able to develop a system that could be easily repurposed, by our mentor Craig Hennessey, 
for use in an engineering course. Since he is running the course for the first time, we are able to provide 
him with most of the materials he would need to run the course and have done a lot of the heavy lifting 
for him, so to speak. 

Its worthy of noting that the we needed to alter the fourth deliverable by demonstrating only partial 
operation (stationary grape picking) of the project at the technology expo. This is due to the fact that we 
were behind schedule, resulting in an untreated bug (a significant lag between picking and moving 
conditions). After the exposition, we were able to patch this bug and verify correct operation of our 
project. 

3.4 Collaboration and External Input to Project 

While consultation with industry contacts including BC VQA and local Okanagan vineyard owners are 
ongoing, there have been opportunities to pitch both the business case and the production feasibility of a 
grape picking robot to outside consultants including BCIT business students and multidisciplinary research 
staff with the Center for Applied Research and Innovation’s MAKE+ team. We also were able to 
communicate with other capstone groups regarding technical issues throughout the term and were given 
advice for future growth at the technology exposition, held on May 10th, 2019. 

3.4.1 BBA 

We gave students from the Bachelor of Business Administration (BBA) program a short abstract of our 
project, as well as a short summary of our objectives related to this project. In return, they gave us a 
business analysis of our project. We found it useful to note that trying to become a price leader during 
commercialization would result in the start and increase of demand for VineBot. The BBA students pointed 
out how our lack of internal marketing and advertising specialists, could potentially lead to problems since 
advertising is an important aspect of any business. 

The BBA students informed us of opportunities including the continuously growing industry and the 
relatively low competition regarding small-to-medium-sized customers. This confirmed our intuition and 
was useful as verification. 

3.4.2 Make+ 

The consultation at the BCIT MAKE+ center allowed us to form some new relationships between visiting 
researchers, which can be used further in the project. General take-aways from the consultation included 
networking with a manufacturing expert who suggested we use vacuum molding to build an attractive 
outer shell for the VineBot before the capstone exposition. We also gained the contact info of an SFU 
mechatronics graduate student, Garrett Kryt, who offered to serve as a helpful resource for any of our 
complicated robotics questions. Overall, the research staff concluded that our project can be feasibly 
created based on the ideas we presented. 

3.4.3 Capstone Groups 

Although we did initially consult students from BCIT’s BBA program during the proposal period, we didn’t 
further pursue outside student consultation. We did however collaborate with other electrical engineering 
students at BCIT, including members of the Black Line project. They were helpful during the mechanical 
design phase, giving advice on 3D printing. They also allowed us use to use some of their materials for 
prototyping, including a small solenoid which we used for testing a solenoid cutting mechanism. 
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In return, members of our team were more than happy to help as mechanical design consultants, pitching 
solutions to some of the design problems they experienced.  

3.4.4 BCIT Capstone Technology Exposition 

During the technology expo, we received advice from attendees, including the possibility of 
commercializing our project, and applying the technology we’ve both created and compiled to other crops 
such as cannabis. Although our mentor Craig Hennessey has previously floated the idea, we found it 
reassuring to know that others were able to envision our technological success in automating the 
harvesting of another crop.  
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4 Project Implementation and Results 
We introduce a high-level description of the project, including how it was split up into sub systems for 
simplicity. We then discuss the design and implementation of our project, which is comprised of a 
description of each element in the design and the actual design process. Problems we’ve encountered will 
also be included in the design and implementation section, in addition to problems caused by design 
choices. 

4.1 High-Level Description 

To create the autonomous system, we decided to split the task into three separate systems:  

4. The harvesting system handles everything involving grape detection and picking, including the 
vision and robotics required 

5. The navigation system handles everything involving mapping and position estimation, and also path 
planning to route from point A to point B around a vineyard 

6. The mission planning system handles the vehicle control, as well as allowing and disallowing when 
the vehicle is able to enter harvesting and mobile states 

Shown below in is a high-level diagram showing the interaction between the 3 segmented systems Figure 
16. 

 
Figure 16 – Integrated Systems Block Diagram 

Together, the systems are bridged with a mission planning system, which determines the operational 
order. A more in-depth diagram of the interaction between the systems is also provided below in Figure 
17. 
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Figure 17 – Autonomous Navigation System 

4.2 Design and Implementation 

The design and implementation of our project was split into sections according to the project plan. Such 
sections include development into the vision system, utilizing the NVIDIA Jetson TX2, working on robotic 
control for the project, creating mechanical parts and assemblies for the project and establishing 
algorithms for position estimate and mapping for navigational purposes. This design and implementation 
section of the report will also cover estimated costs for each section of the project. 

4.2.1 Vision 

The primary goal of the vision systems was to detect grape clusters in 3D space and provide feedback for 
the robotic picking system. To implement the vision system, we used two cameras, the PMD Pico Flexx 
depth camera and Logitech C922x HD webcam as the primary sensors for detection. We also used the 
NVIDIA Jetson TX2 computer in the vision system to run our neural network models. 

Pure OpenCV Based Vision Approach 

Early work using a purely OpenCV based approach to grape cluster detection provided some mixed results. 
While the image detection algorithm based on the Hough Circle Detector in combination with density-
based clustering of detected grapes provided good results at low frame rates and fixed camera positions, 
the system proved noisy and unreliable when subjected to motion.  
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Figure 18 – Hough Circle Detector (left), Density-Based Clustering (middle), Final Algorithm (right) 

Based on the early results, concurrent development into a more robust neural network-based system was 
initiated. As detailed in the next section, results were more favorable and work into the OpenCV system 
was discontinued. 

Machine Learning 

To detect grape clusters, we used machine learning object recognition. The specific machine learning 
framework we decided casts a single neural network on every image at their original sizes, instead of 
scaling and re-applying the network. This is beneficial because it allows faster detection of objects when 
compared to more traditional neural network frameworks. More information on machine learning can be 
found in the machine learning section of Appendix A: Background Information. Shown below are the 
results of the algorithm on some artificial grapes. 

 
Figure 19 – YOLOV2 Based Detection Algorithm 

Initially, we trained the system on the Google Open Images V4 grape dataset, which contained about 750 
pre-annotated images. Starting with a pre-annotated dataset reduced development time significantly. 
Various utilities were found for hand annotating data but were not used due to the pre-existing dataset. 

When testing out a machine learning model, we noticed that camera rotation, grape colour, and image 
exposure influenced probability of detections. In order to train a grape detection model independent of 
these variables traditionally, the diversity of the data set would need to be expanded to accommodate the 
encountered variation. Thankfully dataset augmentation when implemented through YOLO is trivial since 
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there are configuration parameters built-in, which allow variation in angle, hue, saturation, and exposure 
of duplicated training images. For our training, the augmentation parameters and their associated values 
are shown below, in Table 1. 

Table 1 – Dataset Augmentation Parameters 

Parameter Associated Value 

Angle 15° 

Hue 0.1 

Saturation 1.5 

Exposure 1.5 

Shown below in Figure 20, is a curve which represents the both the mean average precision (mAP) and the 
loss function for the machine learning process. 

 
Figure 20 – mAP-Loss Training Curve 

From training only on the Google Open Images dataset grape classifier, and training with dataset 
augmentation, we were able to reduce losses to less than 0.2769 and achieve a mAP of about 43%. It is 
recommended that for a reliable machine learning model, the mAP is greater than or equal to 50%, 
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however from our field tests, we were able to determine that the initial model was sufficient for the initial 
development of our capstone project 

Reinforced Machine Learning 

To improve the machine learning results, we realized that we needed to increase our dataset size. The first 
option that came to mind was to pay for a grape dataset. This option was expensive, and did not 
guarantee new data, since we were using the Google Open Images V4 dataset, which was a compilation of 
images from Google. The second option, which was suggested by our project mentor, Craig Hennessey, 
was to take pictures of our grapes that we were planning to use, and then use a third-party annotation 
service. This option like the previous option would cost money, but the price would depend on the 
turnaround time and amount of data needing to be annotated. This option would also make the machine 
learning model slightly biased towards our artificial grapes. The last option which we decided to purse, was 
to use the current machine learning model to annotate data for us. This involved creating an algorithm 
which would only save data if all the detections in the frame were above a certain threshold. The method 
is shown below in Figure 21. 

 
Figure 21 – Closed-loop Machine Learning 

This method was good in the sense that it was cost effective and required a relatively minimal time 
investment. One potential pitfall for this method was that the annotated images fed-back into the machine 
are susceptible to false negatives. 

Using the closed-loop method, we were able to double our dataset size from 750 training images to about 
1500 training images. Training the model to 5200 iterations with the same parameters as the previous 
model, we were able to bring mAP from 43% to about 63%. 

Tiny YOLO 

Using the NVIDIA GeForce GTX-1080, we were able to run our machine learning detection models at 60 
frames per second (FPS) on a desktop computer. However, we knew that at some point we were going to 
need to run the model on an embedded system, which would have a fraction of the processing power. We 
decided that it would be in our best interest to invest some time in experimenting with Tiny-YOLO, a 
version of the YOLO algorithm meant for higher inference speeds. 

The revised algorithm operates identical to the normal YOLO algorithm, but differs in the fact that there 
are only 9 convolutional layers as opposed to 24, which increases the detection speed while decreasing the 
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detection accuracy. In particular, we noticed that detections would disappear and reappear in subsequent 
frames, and a prevalence of false positives. However, it was also noted that there was a dramatic increase 
in frame rate (14 FPS) from the switch between YOLO (7 FPS) and Tiny YOLO (20 FPS), when running on the 
Jetson TX2.  

To solve the detection noise problem, we then tried to increase the resolution of our detection model 
from 416x416 to 608x608. During the training process, this seemed to boost the mAP by 20% compared to 
the previous model, however after testing, we realized that there was increased noise. Also, increasing the 
resolution to 608x608 made the processing time increase, resulting in the frame rate dropping to around 
12 FPS. Ultimately, we decided that the increase in frame rate wasn’t as beneficial to us as detection 
accuracy, and therefore sidelined the Tiny-YOLO model. A possible yet unexplored solution to increasing 
the frame rate while keeping the detection accuracy could be to convert to the current YOLO model to a 
TensorRT model, which is an optimized neural network format for the NVIDIA Jetson TX2. 

False Positive Keyboard Detection Problem 

In the previous model, we were able to accurately determine what was and wasn’t a grape, however one 
object which was constantly mis-classified was a standard computer keyboard. When tilted at a certain 
angle in addition to lighting reflected from the keys, the keys of the keyboard resemble what look like 
grapes in a cluster. 

To solve this problem, we decided to take pictures of keyboards which were in the capstone lab. In total, 
about 100 pictures of keyboards were added to the machine learning training data. To use these images as 
training data, we needed to also include a text file for each image, which would be empty since an empty 
file is indicative of a negative image. 

From tests, we were able to determine that the updated neural network had stopped misidentifying 
keyboards as grapes, as it had previously. 

Depth Measurement 

Building off the existing 2D vision system, the next order of business was to expand our 2D machine 
learning system to a 3D machine learning system. We planned on accomplishing this task by utilizing the 
PMD Pico Flexx depth camera. 

 
Figure 22 – PMD Pico Flexx 

Unlike a stereoscopic depth camera, which compares two images to infer distance, the Pico Flexx falls into 
the category of time-of-flight (ToF) depth cameras and operates by flashing an infrared light source and 
using the phase difference of the returning light to infer distance. Images taken with the camera are 
composed of pixels representing depth (in millimeters) instead of grayscale color intensities. Shown below 
in Figure 23 is the output of the Pico Flexx camera in colourmap form, where depth range is mapped to a 
hue value.  
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Figure 23 – Depth Measurement Heatmap 

Our initial intention was to train a machine learning model on 3D point cloud data of grapes. However, due 
to the lack of 3D datasets readily available and our specific application, point cloud detection of a grape 
seemed like a difficult task. Instead what we ended up doing was using the existing 2D detection model, 
and then applying a linear coordinate transformation between the 2D camera and the depth camera to 
evaluate the distance to the center of the detected cluster. The caveat with this depth measurement 
method is the requirement to calibrate the differences in lens position between the two cameras. 
Calibration between the two cameras proved to be a simple, visually aided process involving a translation 
and scaling between the two aspect ratios of each camera. Shown below in Figure 24 are the detection 
models for both the 2D and depth images. 

 
Figure 24 – Coordinate Transformation between Color and Depth Cameras 

It’s important to note that the bounding box for the depth image has been taken in by a factor of 0.25 in 
both directions to filter out the distance of the background filling the corners and sides of the detection 
bounding box. 

One issue presented when trying to determine depth measurements for grape clusters was inconsistency 
of measurements due to the color of the artificial grapes being tested. This problem predominantly 
effected the dark purple grapes and was most likely due to the grapes absorbing the infrared light being 
emitted by the depth camera instead of reflecting it back for phase measurement. Since authentic grapes 
have a light hazy film on the exterior compared to their shiny black artificial counterparts, we can assume 
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that they may not absorb light to the extent of the artificial grapes we have tested on. That being said, we 
decided to use red grapes for testing consistency. It is doubtful that this problem would arise when using a 
stereoscopic camera instead of an infrared ToF camera. 

Another problem we ran into when trying to integrate the depth cameras was that there was a significant 
lag associated with the frames provided by the depth camera. We only noticed this issue when testing the 
vision system on the vehicle battery instead of plugging in to a wall outlet. After some consideration, we 
realized that this was due to the fact that the depth camera sample code was reading in frames to a FIFO 
buffer, and when the queue was not being read, it would build up a substantial backlog. This issue was 
easily fixed by removing the buffer and only reading the most recently received frame. 

4.2.2 NVIDIA Jetson TX2 

An NVIDIA Jetson TX2 was utilized to aid in the processing intensive tasks associated with machine vision 
and neural network object detection. The hardware acceleration provided by the Jetson’s 256 CUDA cores 
help bring the machine learning detection models close to real-time, while consuming little power. 

Setup 

Setting up the Jetson was easier than expected. It required creating an Ubuntu machine (partition on a 
Windows PC) which was used to download the Jetson JetPack SDK, and then transfer it to the Jetson via 
SSH and USB. Other pieces of important software which were installed on the Jetson include the OpenCV, 
DarkFlow, and TensorFlow. The setup took days as opposed to the weeks allocated in the project plan. 

Vision 

After installing all the required packages, we decided to test our detection model. Some important findings 
included an inherent USB camera buffer lag, lack of camera parameter control in OpenCV, and higher than 
expected YOLO inference time. Overall, we were able to achieve around 3 FPS on the Jetson, which was 
below the 60 FPS performance seen on the desktop computer with the NVIDIA GTX-1080.  

To solve the USB camera buffer lag, we updated the way we processed and captured frames. By multi-
threading our capture and processing, we were able to grab the most recent frames from the camera 
undependably of the processing done to the frames (which was the slowest process in the loop).  

OpenCV currently only allows up to 30 FPS capture rates using USB webcams. In order to ensure that we 
were always operating on the most recent information, a capture rate closer to 60 FPS would have been 
more ideal. A Python 3.x binding for Linux’s Video For Linux (V4L) allowed us to set the webcam capture 
rate to 60 FPS. 

Even with these improvements, inference time was still high. After browsing through Darknet GitHub 
issues, we decided to clone a GitHub user’s (AlexeyAB) custom Darknet repository fork, which included an 
update to the neural network hidden layers which were previously causing problems. With all of these 
optimizations, we were able to bring the frame rate of the machine learning detection to about 7 FPS. 

Grape Server 

With the machine learning model able to detection grape clusters position in 2D, and the depth camera 
being able to provide a depth measurement, the combined vision system was in a position to provide 3D 
(technically 2.5D) grape detection. To aid in the integration of the robotics and vision systems, we 
designed a system which would be able to coordinate communication between the motion controller in 
the robotics system. The grape server communication system communicates over TCP sockets, and 
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provides information regarding the center of the cluster in the frame, as well as the distance of the grape 
being tracked from the depth camera. 

4.2.3 Robotic Control 

We were able to complete an early implementation of robotic picking by integrating the vision system with 
a robot arm, the uArm Swift Pro. Data was sent over TCP sockets and used to move the robot accordingly. 
The current picking algorithm works as follows. 

1. Detect grape clusters in frame 
2. Center left most grape cluster in frame 
3. Move in to pick 
4. Re-center left most cluster if needed 
5. At picking depth, engage grippers 

For this initial test system, appropriate proportional gains in the x and y direction were determined 
experimentally by increasing the gain to the point of oscillation, and then backing it off until the system 
was stable. These gain parameters are heavily dependent on update rate of the feedback loop. If any 
changes are made to the sampling rate, these parameters will have to be revisited. 

The proportional gain of the depth feedback loop was divided into two stages: far gain, and close gain. The 
far gain was used to move the gripper quickly to the proximity of the grape cluster, while the close gain 
was used to fine tune the position before picking.  

Motion Controller 

We initially tested the uArm Swift desktop robot arm with a simple camera feedback system. A camera 
was mounted to the arm and used to generate a feedback signal in a simple “eye-in-hand” visual servoing 
control technique. The setpoint for the two-dimensional tracking system, shown in Figure 25, is keeping 
the target in the center of the camera’s field of view. Any motion of the target enters the system as a 
disturbance in the output.

 
Figure 25 – 2D Camera Tracking Robot Feedback System 

The vision system in the diagram can be replaced with any grape tracking algorithm desired. Initial testing 
utilized a simple circle detector (Figure 26) to generate a feedback signal from the position of a cardboard 
box[28]. 
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Figure 26 – Simple Object Tracking Vision System 

For this initial test system, appropriate proportional gains in the x and y direction were determined 
experimentally by increasing the gain to the point of oscillation, and then backing it off until the system 
was stable. These gain parameters are heavily dependent on update rate of the feedback loop, and since 
we needed to make changes to incorporate the slower sampling rate of the detection system, these 
parameters needed to be revisited. 

4.2.4 Mechanical Design 

Camera Mounts 

For the 3D grape detection to work well, we needed a way to keep the two camera sensors as lined up as 
close to each other as possible, while also having the cameras somehow mount to the robot end-effector. 
It was also a requirement during testing, that the camera mount be easily removable from the robot. Using 
these requirements, we were able to create the camera mount shown below in Figure 27. 

 
Figure 27 – Camera Mount 

The camera mount is a 2-piece design, which houses both cameras, with the PMD Pico Flexx above the 
Logitech C922x. To allow the two pieces to successfully fit together without any adhesive or fasteners, we 
decided to compression-fit the two parts together using a jack-plug design. 

Before landing on the most recent revision, changes were made to the camera mount assembly to 
incorporate proper camera fitting, suitable distance between cameras and the picking mechanism, 
strengthening of mechanically weak areas, and general aesthetics.  
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Gripper Extensions 

Another set of parts we designed were extensions for the existing uFactory uArm Gripper. The extensions 
help loosen the constraints on the robot motion and accuracy of the depth camera. 

  
Figure 28 – uArm Gripper and Gripper Extension 

The gripper extensions fit over the gripper and increase the capturing threshold to 2 centimeters. The 
gripper extensions are also very light and do not hinder performance of the robot in terms of static and 
dynamic loading. 

Stems 

Since we decided to try an make our setup as realistic as possible, we decided to create artificial stems 
which we could cut using a cutting mechanism of some sort. The stems would need to be easily cut using a 
razor blade and would need to hook onto the existing artificial grapes and grape vines.  

We started off by printing stems that were two layers of PLA thick, thinking that they would be brittle 
enough for easy cutting. However, from experimentation we realised that the length of these stems also 
played an important part. An observation made early into the stem development was that the longer 
stems we printed ended up being less brittle and were less prone to being cut consistently. Thus, we 
decided to create shorter, 3 cm long stems that were two layers of PLA thick (0.44 mm) and carefully lifted 
off the 3D printer bed. The exact dimensions of the PLA stem are provided below in Table 2. 

The stems themselves also needed to be able to hook onto an existing artificial grape bunch’s loop and to 
the artificial vine we were using. To solve this problem, we decided to add a diamond/arrow shape solid to 
the bottom of the stem, which could be easily slipped in a given grape bunch’s loop, and a T-shaped 
extrusion at the top of the stem, which could be easily attached to a hook on the artificial vine. The stem is 
shown below in Figure 29, and the stem hook, which we’ve dubbed “Vine-Grip” is shown in Figure 30.

 
Figure 29 – PLA Stem 
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Figure 30 – Vine-Grip Stem Hook, and Vine-Grip with Stem 

Table 2 – Stem Dimensions 

Section Dimensions 

Overall Length 30 mm 

Width of T-Bar 12 mm 

Stem Width 0.44 mm 

Max Barb Width 4 mm 

Stem Cutter 

A stretch-goal of this project was to be able to come up with a semi-realistic way to harvest grape bunches 
using our robot, which could be scaled up for testing on real crop. Since the end-effector for the robot had 
an existing gripping system, we decided to possibly utilize the force provided by the grippers to cut stems. 
The cutting system would’ve needed to incorporate a razor blade, since we had about a dozen sharp razors 
readily accessible for use and are cheap to purchase. Furthermore, we were able to find CAD files related 
to the razor blades which we decided to use, that could be used to save time when modelling. 

To properly model the motion of the grippers, we needed to determine the operating radius (center of 
rotation) of our grippers. This was done by measuring the distances of the ends of the grippers in the 
open-position and drawing two concentric circles with one being a gripper length larger in radius than the 
other. We then added chords to the circles which represented the distances we initially measured and 
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allowed our CAD program to solve for the correct radius of each circle based on the constraints. This is 
visually depicted below in Figure 31. 

 
Figure 31 – Gripper Motion Sketch 

When looking into the grip-cutting method, we realised that the force provided by the grippers wasn’t 
enough to accurately cut artificial stems every time. The uArm gripper documentation advertises that the 
grippers can provide up to 800g of force [29], however we came to the conclusion that the force provided 
was much less. This was due to a limit switch built into the gripper circuitry and would stop the grippers 
from moving past a force (current) threshold. Shown below is a design for a grip-cutting mechanism, which 
would cut but moving a razor blade into an anvil. This design required adding, and possibly gluing down 
extra pieces on to the gripper extension pieces. 
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Figure 32 – Gripper Stem-Cutting Mechanism 

We also looked into using a solenoid-powered cutting system, that would use the force provided by a 
linear actuator or solenoid to drive a razor blade into an anvil. This design however was deemed infeasible 
due to the challenges associated with solenoids. For example, the forces provided by low voltage solenoids 
are considerably low compared to a servo for instance. Also, the stronger solenoids tend to be heavier, 
which is impractical due to our robot being extremely prone loading failure (The stepper motor’s holding 
force is overcome by loading force). 

 
Figure 33 – Solenoid Stem-Cutting Mechanism 

The chosen design involved repurposing the wrist joint servo on the robot for cutting purposes and fitting 
it with a blade. This meant that the robot would lose 1 degree of freedom, however the robotic algorithm 
didn’t utilize the mobility of this joint, so the losses were minimal. From online documentation, we were 
able to determine that the wrist joint servo was able to provide 2.4 kg∙cm of torque, which was 
determined to be adequate for our purposes. The other benefit to using the servo was that there were 
existing connections for the servo on the robot, and control of the servo was trivial since it was technically 
built into the robot motion control code. After testing and tweaking the design, we were able to design the 
cutting system as shown below in figure, which requires the fabrication of four parts. Three of the parts 
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are fastened to each other, while the blade is secured to the assembly by a compression fit of the third 
part. 

 
Figure 34 – Servo Stem-Cutting Mechanism 

With a more powerful cutting system, we would be in a position to consistently cut stems regardless of the 
stem size. Another possible design choice for a cutting tool would be a rotating blade, such as a saw. A 
small saw blade attached to the end-effector of the robot would be able to spin up and cut stems, or even 
a pair of scissor-like blades. However, due to the loading constraints on our robot and power constraints of 
the end-effector, we decided to utilize the most minimalistic design which would incorporate a single razor 
blade. 

4.2.5 Pose Estimation and Mapping 

LiDAR Point Processing 

The primary goal of the LiDAR sensor and subsequent point processing is to determine the location and 
orientation of the vine rows with respect to that of the vehicle. This information will be used to determine 
how the vehicle should move to bring the harvesting system within picking range of grapes. 

Figure 35, below, shows the data from a single LiDAR scan consisting of around 700 radial distance 
measurements. This set of data points is referred to as a point cloud. At this resolution, the LiDAR sensor 
produces around six scans per second. 
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Figure 35 – LiDAR Point Cloud 

By applying standard cluster analysis techniques to the point cloud, the data points for each distinct object 
are grouped together. By determining the physical size of each group, a probability factor of a group being 
a vine post is assigned. All groups with a probability factor lower than the threshold are ignored. Figure 36, 
below, shows the result of the cluster analysis with the groups to be ignored colored grey. 

 
Figure 36 – Cluster Analysis of LiDAR Scan Data 

The orientation of each vine row is found by determining the vectors between each group suspected to be 
a vine post, as seen in Figure 37, and looking for sets of vectors with similar length and orientation. 
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Figure 37 – Distance Between Clusters 

The result of the above analysis is a set of vectors describing the location and orientation of the vine rows 
with respect to the vehicle, as seen in Figure 38. 

 
Figure 38 – Plot of Grape Vines 

SLAM 

The next step taken was to run this filtered data (without vine rows lines) through the Python EKF SLAM 
program, to see if the data provided was enough to build an accurate persistent map from the 
instantaneous scans using a SLAM algorithm. However, what ended up happening was the vine posts were 
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being translated wrong in the map, causing the pose estimation to be incorrect. This is shown below in 
Figure 39, with the red path representing the estimated path of the robot and the green crosses 
representing possible landmarks. 

 
Figure 39 – EKF SLAM Initial Pose Estimation 

Since the problems we experienced with SLAM were buried deep in a sea of covariance settings and 
kinematics models, it was decided that we would try and run the original data through the MATLAB SLAM 
algorithm, provided in the Robotics Systems Toolbox. Shown below in Figure 40 and Figure 41 are the 
results of the data from the algorithm. 

 
Figure 40 – MATLAB SLAM Algorithm (Curved Path) 
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Figure 41 – MATLAB SLAM Algorithm (Straight Path) 

The MATLAB SLAM algorithm does provide an accurate representation of the data, however, lacks in some 
areas. For instance, we noticed the algorithm runs slowly compared to the EKF SLAM algorithm. It also 
requires a Simulink connection between our mobile hardware and a computer running MATLAB. Lastly, the 
data shown above cannot be exported in it’s given state. Instead, the map needs to be converted into an 
Occupancy Grid, which in the process may filter out the vine post clusters. 

 
Figure 42 – Python EKF SLAM (Straight Path) 

Based on the issues discovered through our testing of MATLAB SLAM, we decided to return to Python EKF 
SLAM. This time we were able to solve the issues related to the kinematic and covariance models of the 
system, and we got vineyard mapping and vehicle localization working in real-time, as seen in Figure 42. 
Through testing we determined that the pose estimation had a typical deviation of ±20mm and ±5°. This is 
largely due to the fact that the lidar can only see the face of the vine post nearest to it, so as the vehicle 
drives by, the position of the vine post is measured from a different side, therefore introducing an error 
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relative to the size of the vine post. In our scaled down vineyard, this pose deviation is significant. 
However, since this deviation would be almost identical in an actual vineyard, it would be insignificant with 
respect to the width of the rows and size of the vehicle and harvesting arm. 

Path Following 

In order to simplify vehicle motion control, we started by implemented a wheel speed controller. This was 
an independent system running on an Arduino Nano and receiving motor speed commands via serial. Since 
the vehicle is a skid-steer, we grouped the motor together, so we only controlled left-side and right-side 
motor speeds respectively. The motor speed was measured by counting encoder pulses from two of the 
motors and fed into a PID loop to maintain the set speed. 

Upon researching many feedback control solutions, we chose to use Model Predictive Control (MPC) as 
this provides a more robust motion control solution. Using the pose estimations from SLAM, the vehicle 
could follow a pre-determined path next to a row of grapes. However, the deviation in the pose estimation 
turned out to be too great to enable harvesting due to the short reach of the picking arm. Therefore, an 
odometry-based path following system was implemented for demonstration purposes. 

4.2.6 Integration 

This section outlines the systems put in place for communication between the main control modules of the 
autonomous harvesting system. 

System Architecture 

The inter-process communication (IPC) standard dictates how all elements of the robot communicate with 
each other. However, coordinate the sequencing between the systems and the system communication, 
the mission planner is used. The mission planning system is a state machine that dictates permissions of 
each system to peripherals such as the drive wheels and picking arm, as shown in Figure 43 above. 

 
Figure 43 – Mission Planning System State Diagram 
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As the vehicle is driving along a vine row, the autonomous harvesting system sends a request to pick 
grapes when a grape is seen by the vision system. The mission planner halts the vehicle navigation and 
motion, allowing the robotic arm to pick grapes. Once all of the grapes in frame of the vision system have 
been picked, the autonomous navigation system then continues with route guidance while the vehicle 
advances, until the next request to pick. 

The mission planning state machine also allows human interaction with the system for tasks such as 
starting and stopping the robotic vehicle. 

IPC Standard 

We decided to model the IPC standard as a simple handshake interface over python sockets. Commands 
took the form of strings like “ready,” “allow,” or “done,” and were encoded into json format before being 
sent over TCP socket between the mission planning module and the harvesting module. The mission 
planner was considered the master with the harvesting module being the slave. 

Table 3 – IPC Command Standards 

Task Requested By: Command Acknowledged By: Command 

Picking Slave “ready” Master “allow” 

Finished picking Slave “done” Master N/A 

Move Forward Slave “fwd” Master “done” 

Move Backward Slave “rev” Master “done” 

Move Closer Slave “far” Master “done” 

4.2.7 Costs 

Shown below are some estimated costs for the materials used in development of our capstone project. Its 
worthy to note that there were some materials omitted from the list due to previous development in the 
project. 

Table 4 – Estimated Development Costs 

Item Quantity Estimated Cost ($ CAD) 

NVIDIA Jetson TX2 1 $ 388.70 

Raspberry Pi 3B+ 1 $ 63.49 

Arduino Nano 1 $ 9.99 

SLAMTec RPLidar A2 1 $ 429.42 

uFactory uArm Swift Pro 1 $ 749.00 

Logitech C922x Pro 1 $ 129.99 

PMD CamBoard Pico Flexx 1 $ 447.33 

Cytron 10A 5-30V Dual Channel DC 
Motor Driver 

2 $ 51.34 

12V DC-DC Converter 1 $ 24.00 
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Nomad Chassis with Motors 1 $ 279.99 

Replacement Encoder Motors 2 $ 120.00 

Turnigy High Capacity 16000mah 6s 12c 
Multi-Rotor LiPo Pack W/XT90 

1 $ 190.26 

4.3 Results, Testing, and Verification 

To best understand what was accomplished during this project, it’s imperative that the results be brought 
forward, along with the testing procedure. In this section of the report, we hope to go over the 
requirements which we had initially set during the proposal period of the project and introduce our results 
in relation to those requirements. A full list of the requirements for this project can be found in the 
VineBot requirements document [30]. It’s also worthy to note that the two GitHub repositories which hold 
the code pertaining to our project are provided in Table 5 below, with their use-cases. 

Table 5 – GitHub Repositories 

Repository Use Link 

Repository for code regarding everything except 
machine vision and learning (Raspberry Pi) 

https://github.com/terrycalderbank/soe-VineBot 

Repository for code regarding machine vision and 
learning (Nvidia Jetson TX2) 

https://github.com/terrycalderbank/VineBot_ml 

4.3.1 Vision 

The vision system had the job of being able to detect grapes, and aid in robotic movement. Some relevant 
requirements for the vision system were as follows. 

1. Identify grape clusters with at least 75% accuracy 
2. Identify purple, green, and red grapes 
3. Identify a point in space with cameras, using a cartesian coordinate system 

To test the first requirement, we made our YOLO model detection threshold 75% and moved our camera 
assembly around a set of 8 artificial grapes on a white background. Initially, we tested on our first machine 
learning model which was trained solely off the Google Open Images grape dataset. We then tested on our 
Tiny-YOLO model, and the normal YOLO model with our reinforced learning method. These tests were 
repeated, however with the artificial grapes attached to our artificial grape vine. Shown below are the 
results of those tests, which show the number of clusters continuously detected while moving the camera.  

Table 6 – Detection Rate of 8 Clusters with Threshold Of 75% 

 Basic Machine Learning Reinforced Machine 
Learning 

Tiny-YOLO 

White Background 75% 100% 50% 

Grape Vines in 
Background 

63% 100% 50% 

The machine learning curves are also shown below for the originally trained YOLO model, the revised YOLO 
model (using the closed-loop training method), and the Tiny-YOLO model we attempted to look into. 
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Figure 44 – mAP-Loss Training Curve for YOLO Training 
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Figure 45 – mAP-Loss Training Curve for Revised YOLO Training 
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Figure 46 – mAP-Loss Training Curve for Tiny-YOLO Training 

For the second requirement, we were able to detect grapes of different colors based on parameters we 
changed in our machine learning setup. Shown below is a detection frame which proves we are able to 
detect purple, green, and red grapes. 

 
Figure 47 – YOLOV2 Based Detection Algorithm 
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The last requirement, being able to identify a coordinate in space, we were able to complete using relative 
coordinates from a 2D image and a relative coordinate for depth from the depth camera. This method 
allows us to identify a 3D coordinate. The coordinates from the 2D image are in pixels, while the depth 
measurement is in meters. 

Some other relevant results to bring forward include the machine learning detection performance on 
different devices. Table 7 summarizes the frame rate at various network resolutions and versions of YOLO 
running on the NVIDIA Jetson TX2 and an Ubuntu computer with the NVIDIA GeForce GTX-1080. 

Table 7 – YOLO Performance with respect to Device 

 
Resolution 

 (px) 

Device Performance 

NVIDIA Jetson TX2 
(FPS) 

NVIDIA GeForce GTX-1080 
(FPS) 

YOLO 416x416 7 60 

Tiny-YOLO 
416x416 30 144 

608x608 12 N/A 

From the results above, you can see that the performance is much better on the Ubuntu PC, but it’s 
important to note that it’s due the hardware acceleration (NVIDIA GeForce GTX-1080 graphics card). 

4.3.2 Arm Motion 

Effective grape picking requires adequate operation of the robotic arm. The requirements for the robotic 
arm system were as follows.  

1. Robotic arm should pick grapes from grape vine without damaging grape vine or grapes 
2. Robotic arm should be able to move end-effector with 6 degrees of freedom 
3. Robotic arm should not oscillate after movement to new position 
4. Robotic arm should be able to move end-effector to a location with precision of ±0.25” up and 

down, ±0.50” side to side and ±0.38” back and forth 
5. Robotic arm end-effector should pick grape cluster from stem. 
6. Robotic arm assembly should spin no more than one rotation 
7. End-effector and gripper assembly should weigh less than or equal to 500g 
8. Robotic arm assembly should run off a 12V 5A supply 

The robotic arm we chose to use for our project was the uArm Swift Pro. We were able to determine the 
operating limits of our robot including the mass of the end-effector assembly, shown below in table.  

To test the first requirement, we created an artificial stem and stem cutting end-effector. An acceptance 
test was carried out and prove that the operation was satisfactory, which involved the robotic gripper 
holding a grape cluster at the stem, and then cutting the 3D printed plastic stem using the cutting 
mechanism.  

For the second requirement, we needed to reduce our requirement to have the robot arm move with 3 
degrees of freedom. Therefore, we were not able to meet the hardware requirement of having a robot 
with 6 degrees of freedom. We were however able to meet the non-oscillatory requirement for the robotic 
arm. 

Due to our choice of robotic arm, we were able move our end-effector with a precision greater than the 
distances shown in Table 8, and therefore were able to verify acceptance. The related requirement was 
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verified by using the uArm Studio software package to control the robotic arm and move the end-effector 
in 3 directions. 

Table 8 – Precision of Movements for Robotic End-Effector 

Direction Distance 

Up/Down 0.25” 

Left/Right 0.50” 

Forward/Backward 0.38” 

With respect to the weight requirement for the end-effector and gripper assembly, we were able to bring 
the total mass to less than 500g, as stated by the requirement. The mass breakup is shown below in Table 
9. 

In terms of performance, we noticed that the robot was failing due to excessive dynamic loading. Given 
certain accelerations required to achieve high speeds, the inertia of the load would overload the staying 
power of the stepper motors. Keeping the mass of the end-effector to a reasonably low level allowed us to 
achieve higher tool movement speeds. 

Table 9 – End-Effector Mass Breakdown 

Item Mass 

Gripper 220 g 

Camera Mount 40 g 

Cutting Mechanism 60 g 

Grape Cluster 20 g 

Total 340 g 

We were also able to run the robotic arm off a 12V-5A supply with the possibility of up to a 15V supply for 
increased performance due to the higher staying power within the stepper motors. 

It was also noticed in testing that some motion ranges of the arm were protected from overreaching by 
software limits while others were not. We needed to program additional motion limits into the robot to 
prevent it from failing. Shown below in table are the hard-coded limits we’ve programmed in the robot. 

Table 10 – Programmed Robot Motion Limits 

Tool Height Reach Limit 

> 150mm System imposed: ~340mm 

<= 150mm 330mm 

 

A stretch goal of this project that was not included in the deliverables was to create a cutting mechanism 
which would emulate a semi-realistic harvest of a grape bunch. A short summary of the different cutting 
mechanisms we experimented with are shown below in table, with the chosen method being the servo-
assisted cutter. 
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Table 11 – Cutting-Mechanism Force Comparison 

 Gripper Solenoid Servo 

Force (N) 4.9 0.5 11.8 

Voltage (V) 5 5 5 

Built & Tested Yes No Yes 

Adequate Performance No No Yes 

4.3.3 Chassis 

Some relevant requirements for the vehicle chassis were as follows. 

 The robot should be powered by a single 12V rechargeable supply with optional low-voltage supply 
outputs (e.g. 3.3V, 5V) 

 The robot battery supply should be easily changeable. 
 The robot supply should power the device for at least an hour on a single charge 
 All bare conductors should not be left exposed near metal chassis 
 All electronics should be insulated from metal chassis 
 Chassis should be redesigned to fit all electronics and insulate them from environment. 

For the first set of requirements, we decided to use a 22.2V 6 cell LiPo battery, which we calculated to last 
us at least 4 hours of operation. The battery was connected to the central supply via xt90 connectors for 
swapping and was regulated using a 12V automotive buck converter. The requirements were tested using 
equipment such as the benchtop digital multi-meter and oscilloscope. The output ripple on the converter 
was found to be <45 mV peak-to-peak.  

In terms of the chassis and electronics, we were not able to redesign the chassis to enclose all of the 
electronics due to time constraints. Instead, we decided to mount the electrical components on the 
outside of the chassis. We did however insulate the metal chassis from bare conductors. All of the chassis 
requirements were verified by acceptance tests. 

4.3.4 Motion & Navigation 

Some relevant requirements regarding the motion and navigation were as follows. 

 Control robotics using vision and sensors and communication with a single platform 
 Handle processing with single board System on Chip (SoC), or a network of boards 
 Processing unit should utilize a single programming language for processing, and limit the use of 

other languages (Python, C++ or C) 
 Processing unit should have 2 or more USB interfaces, and a combined multicore processor for 

software requirements 
 Vehicle should be able to navigate vineyard (without pre-programmed route), avoid obstacles, and 

stay within 35 cm (from inner tire of vehicle) to vine of interest, all with the help of sensor input 

For the processing requirements, we were decided to use the NVIDIA Jetson TX2 and a Raspberry Pi 3B+ 
single board computer. The NVIDIA Jetson TX2 was used to run the vision system, while the Raspberry Pi 
was used to control the navigation and robotics systems. However, networking issues we experienced 
using the Raspbian operating system (OS) made it difficult to run the navigational and robotics tasks 
reliably. Therefore, we decided to run the effected tasks on a separate PC, while having the NVIDIA Jetson 
TX2 continue to run the machine vision operations. For all of the scripting in the project, we used Python 
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due to ease of rapid prototyping, it’s plethora of code samples and support, and the number of ready-
made packages for tasks such as machine learning and robotics control. 

For the processing requirements, we determined that the NVIDIA Jetson TX2 runs off of a Dual-Core 
NVIDIA Denver 2 64-Bit CPU and a Quad-Core ARM® Cortex®-A57 MPCore, while the Raspberry Pi runs the 
1.4GHz 64-bit quad-core Broadcom Arm Cortex A53-architecture processor. Between the two devices we 
were able to meet the requirements for multiple cores in the system (sufficient for multithreading), and 
multiple USB ports. 

Some performance results for the NVIDIA Jetson TX2 with our final configuration are shown below in Table 
12. 

Table 12 – NVIDIA Jetson TX2 Performance 

Metric Performance 

Darknet/YOLO Detection 7 FPS 

Depth Camera 25 FPS 
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5 Conclusions and Recommendations 
We hope that the earliest sections have been indicative of a definite need for a precision picking system 
for grapes with the goal of combating labour shortages in a growing industry that has the potential to 
continue growing due to external factors like climate change induced crop migration. 

Through development, testing, and verification of our project, we have outlined enough detail to show 
that we were successful in achieving the following deliverables (with some completed fully, and others to a 
degree): 

1. A proof of concept autonomous grape picking vehicle 
2. A final report documenting our project 
3. An organized git repository with extended project documentation 
4. A live demonstration of the project for the capstone expo including signage and literature 

From our results, one can deduce that the vision system is fairly reliable. Throughout testing, we were 
unable to witness a case when grapes were not detected. Running the machine learning model on the 
embedded computer (Nvidia Jetson TX2) was significantly slower than on a desktop with a graphics card, 
however this was expected, and could be improved by switching to a more optimized neural network 
framework (TensorRT). 

The robotic arm that we decided to use made it difficult, but not impossible, to meet some of our 
requirements and objectives. Having less degrees of freedom (DoF) meant that the robot was harder to 
maneuver, while also simplifying its control. We were also able to determine our robot’s working limits 
with the load of the camera assembly on the end-effector and were able to verify most of the robotic 
requirements via acceptance testing. A cutting end-effector was implemented and tested. 

Given the time constraints, we were unable to re-design the chassis to accommodate all of the electronics 
internally. This however wasn’t a planned deliverable and therefore wasn’t considered in the minimum 
viable product (MVP). The supply for our vehicle was regulated to 12V using a DC-DC convert, and through 
the results, we were able to determine the output ripple on the converter to be less than 45 mV peak-to-
peak. A majority of the requirements were met via acceptance testing. 

For the motion and navigational processing requirements, we were unable to meet the requirement of 
using on-board computers only. This is was due to unreliable network performance we experienced when 
using the Raspberry Pi with the Raspbian OS. Instead, we decided to use a computer in its place, which we 
plan on replacing in the near future. We were successful in integrating the two separate systems to work 
as one cohesive unit. 

5.1 Relatable Applications 

A possible application which we can relate to our project is the harvesting of cannabis. Since the 
legalization of cannabis in Canada, there has been an increase in attention and growth in British 
Columbia’s cannabis industry. In 2018, Statistics Canada estimated the size of the cannabis market to be 
$5.7 billion, rising at an average rate of 1.0% per quarter [31], and according to presenters at a BCIT hosted 
ISA presentation on cannabis automation, little work has been done with regards to the automation of 
harvesting cannabis. We could potentially take advantage of this recent agricultural opportunity by 
modifying our project to detect and pick cannabis buds rather than grape clusters. 

Since cannabis grows in greenhouses, a rugged vehicular design wouldn’t be needed. Thus, we could 
retrofit a robotic arm on a conveyer or rail system, that would be able to move across crop rows. We also 
wouldn’t need to be as concerned with environmental conditions, since crops grown in greenhouses are 
typically well-regulated. 
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In terms of the technical modifications needed to detect marijuana buds, we would simply need to retrain 
our neural network model on marijuana buds, instead of grape clusters. The main challenge would be 
finding a large enough dataset to train our model on. Another possible challenge would be to develop a 
new end-effector specifically for harvesting buds, based on current methods (clipping). 

5.2 Future Work 

Since we’ve developed a scaled down autonomous grape picking vehicle, it would be beneficial to create a 
full-sized vehicle which can be tested on a real vineyard. Our industry contact Graeme Duncan, of 
Naramata BC, has been kind-enough to allow us to test a prototype in his personal vineyard. This gives us 
strong motivation to create a full-sized vehicle capable of dealing with real crops rather than our simulated 
vineyard. It would also be a good idea to redesign the vehicle chassis so that it is properly equipped for 
outdoor use. This includes shielding from the elements (Rain, Snow, Dust) and coming up with measures 
for dealing with performance-hindering natural occurrences (i.e. dust and moisture on camera lenses). 

More time could also be spent on the picking mechanism, including replacing the consumer grade robot 
with something more industrial with a higher payload, designing a custom cut-and-grip end-effector, and 
improving the machine learning model such that it is more accurate, precise, and fast with regards to crop 
detection. 

Lastly, we would like to explore the possibility of commercialization. We’ve determined that “robot rental” 
business model best suits our product and collective goals. 
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7 Appendices 

7.1 Appendix A: Background Information 

7.1.1 Machine Learning 

One of the key findings that we realized when attempting to train for machine learning was that there are 
several formats for image annotation. We also were able to experience the difference hardware 
acceleration (graphics card) plays in terms of machine learning. Also, lighting may not be important 
enough to worry about, based on our testing with the machine learning model. 

Convolutional Neural Network 

A neural network is a method for detecting features within an image. A typical neural network consists of 
an input layer, an output layer, and some hidden layers in-between which are used for manipulation. A 
basic neural network diagram is shown in Figure 48, where a single hidden layer is sandwiched between 
the input layer and output layer. 

 
Figure 48 – Neural Network 

When dealing with images, a convolutional neural network (CNN) is usually applied. A CNN consist of a 
regular neural network, with the input being a window of a predetermined size. The window slides across 
the entire image, and with the help of the hidden layers, gives rise to features in the image. 

The hidden layers are attributed with the actual detection of objects and are often called filters or kernels. 
These hidden layers are what are being found or developed during the machine learning process and are 
expressed by coefficients. Initial hidden layers for a model usually give the ability to detect edges and 
other simple features of an image for example.  

Machine Learning Basics 

For the initial milestone, we set a goal of being able to train a machine learning model to do grape cluster 
detection. To get to the point of detection, we first needed to be able to understand how the machine 
learning process operated. Figure 49 shows a simplified machine learning model. From the figure, one can 
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deduce that the machine learning method is comparable to a black box, where it is very hard to determine 
what the machine is actually learning. 

 
Figure 49 – Machine Learning Model (simplified) 

To best understand what is going on when object detection is taking place, it is important to define and 
break object detection into two terms, shown below in Table 13. 

Table 13 – Basic ML terms and definitions 

Terminology Definition 

Classification To determine if a classifier is present in frame. 

Localization To determine where a classifier is located in frame. 

Precision Proportion of positive identifications that were actually correct. 

Recall Proportion of actual positives that were identified correctly. 

There are also two other terms, Precision and Recall, which are more mathematical constructs. Shown 
below in are the mathematical representations of precision and recall. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒௉௢௦௜௧௜௩௘௦

𝑇𝑟𝑢𝑒௉௢௦௜௧௜௩௘௦ + 𝐹𝑎𝑙𝑠𝑒௉௢௦௜௧௜௩௘௦
 

Equation 1 – Precision Definition 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒௉௢௦௜௧௜௩௘௦

𝑇𝑟𝑢𝑒௉௢௦௜௧௜௩௘௦ + 𝐹𝑎𝑙𝑠𝑒ே௘௚௜௧௜௩௘௦
 

Equation 2 – Recall Definition 

Precision and Recall are inversely proportional to each other, meaning an increase in Precision will result in 
a decrease in Recall. This can be shown in graphical format as a Precision-Recall curve, an example of 
which is shown below in Figure 50. 
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Figure 50 – Precision-Recall curve for classifier Person 

Using the Precision-Recall curve, one can calculate the Average Precision (AP), which is the moving average 
of the curve. According to a source, the “Precision-Recall curves summarize the trade-off between the true 
positive rate and the positive predictive value for a predictive model using different probability 
thresholds.” This is a useful metric that deals with quantifying classification. 

𝐴𝑃 =
ଵ

௡ାଵ
 ∑ 𝑃(𝑅௜)

௡
௜ୀ଴  where 𝑃(𝑅௜) is the Precision at Recall 𝑅௜. 

Equation 3 – Average Precision 

Another metric which is meant to measure the localization is the Intersection over Union (IoU). This metric 
finds the variation between the ground truth and predicted localization. The intersection represents the 
areas which are common between the two sets of bounding boxes, while the union represents the total 
area covered by the two sets of bounding boxes. This measurement quantifies localization. 



BCIT ELEX 7890 Capstone Project Completion: Final Report  Vine ‘Em And Dine ’Em: VineBot 

 56 of 66 2019-05-22 

  

Figure 51 – IoU examples 

However, the IoU is directly related to the Precision-Recall curve. For different IoU thresholds, the 
Precision-Recall curve shifts, resulting in an in-direct relationship between classification and localization. 
This gives rise to the mean average precision (mAP), which is the mean of the average precision values at 
different IoU thresholds. The mAP metric is particularly important because it is indicative of a model 
performance. Shown below is a Precision-Recall curve with different IoUs, in Figure 52. 

 
Figure 52 – Precision-Recall-IoU curve 

In terms of the training process, images are fed into the machine, and the machine then creates a model 
based on features it has interpreted identify the classifier, via the use of a convolutional neural network. 
So, for each image fed into the machine, a matching annotation file also needs to be present, which shows 
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the machine where in the image the classifier is present. However, due to the various methods and 
programs used for training machine learning models, there are different annotation formats. 

Machine Learning Datasets 

Since we downloaded a precompiled machine learning dataset from Google Open Images, the dataset 
came fully annotated in the Google Open Images format. However, we needed the images to be in the 
correct format for Darkflow/Darknet YOLO. The annotation formats for both datasets are shown below in 
Figure 53. 
Google Open Images Format 

<Classifier> <Xmin> <Ymin> <Xmax> <Ymax> 

E.g. Grape 100.43 32.23 123.5 200.3 

YOLO Format 

<Classifier> <Xcenter> <Ycenter> <Width> <Height> 

E.g. 0 0.5 0.43 0.25 0.28 
 

Figure 53 – Image Annotation Formats 

To convert between the two datasets and verify that the datasets were in fact annotated correctly, two 
python scripts were created which converted the annotation format and allowed a user to view what 
exactly was annotated for each image. The scripts can be found in the relevant appendix section of this 
report. 

Machine Learning Metrics 

Since machine learning is very obscure, it would be great to have a way to evaluate the accuracy and 
efficiency of our trained model and understand how the model accuracy changes depending on the 
dataset, and the amount of time the machine is training for. The metrics consider both classification and 
localization, as well as losses that occur during the machine learning process. 
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7.2 Appendix B: SWOT Analysis 

To briefly summarize important details from the internal and external analysis of the VineBot project, a 
compilation of strengths, weaknesses, opportunities and threats are gathered below in Table 14.This 
SWOT analysis includes information discussed previously in the proposal. 

Table 14 – SWOT Analysis 

Strengths Weaknesses 

 Accumulated Team Experience 
 Previous Progress 
 Testing Flexibility 
 Minimized Losses with Precision Grape 

Picking 

 Limited Business Experience 
 Divided Priorities (School) 

Opportunities Threats 

 Growing Agricultural Automation Demand 
 Growing Agriculture/Wine Markets 
 Lack of Precision Picking Solutions 

 

 Speed of Non-Precision Solutions 
 Drought 

7.2.1 Strengths 

Our strengths include accumulated team experience, the previous VineBot work completed for the SoE, 
and the inherent flexibility and adaptability of the product. 

Besides his experience in the telecommunications field, and skill as a computer vision programmer, Navraj 
is a forward-thinking competent documenter who ensures that notes are taken throughout the design 
process. These notes are invaluable when it comes to troubleshooting and evaluating alternatives. Navraj 
has a knack for creative research and consistently finds resources that enable progress. Brayden brings to 
the table four years of professional mechanical design and automation experience. His work with CNC 
machines has provided us expert insight into motion control which is a large component of past, present, 
and future work. Brayden’s experiences in the industrial workplace have given him a practical and 
pragmatic viewpoint into design. Terry has experience in the industrial robotics and automation industry. 
He also introduces creativity to any project taken on and is a dependable group member. Projects 
overseen by Terry are seen through to completion. He is also from BC’s main wine growing region and has 
experience harvesting wine grapes. 

The SoE project has provided us with a functioning prototype vehicle, and most of the financial resources 
required for the capstone project. We have already ordered many of the parts required for our project and 
as a result have more time to work towards the capstone. Most of the research we have done for the 
previous project is applicable to this one as well. 

Early design decisions have given us flexibility in testing motion and vision. We have built sixteen feet of 
scale vineyard model to test our work with. The realism of our model allows us to conduct indoor and 
outdoor testing at our leisure for the duration of the project. Many of our design decisions are not specific 
to picking grapes. The robotic picking abilities may apply to other crops as well such as tree fruits or 
cannabis. 

7.2.2 Weaknesses 

Our weaknesses result from lack of business experience and having to share our time with schoolwork. 
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Besides working in businesses and taking management, marketing, and finance classes, we bring no real 
entrepreneurial experience to our project. It can be easy to assume that because a project is feasible or 
interesting, that there is demand for it. Until we have feedback from our stakeholders in the wine industry, 
we cannot determine value or demand. We will need to provide a minimum viable product to garner this 
feedback. Also, due to our lack of internal marketing and advertising specialists, it would be difficult to 
promote this idea and gain attention in our targeted industry, without external help.  

Besides managing the capstone project, our time must be shared with our schoolwork. The best we can do 
to mitigate this, is incorporating as much capstone research and work as we can into other class projects.   

7.2.3 Opportunities 

Some of our opportunities include growing markets, growing demand, and lack of precision solutions. 

Possible market opportunities include Canada’s growing agricultural industry, and wine industry. As 
demand for local labour continues to grow, solutions will be sought out for making the task of farming as 
efficient as possible. VineBot can be easily adapted to work in different agricultural fields, which allows 
further expansion after a working proof of concept. Projected labour shortages also provide a possible 
opportunity for VineBot to be adopted. Since agriculture will continue to grow, and the agricultural labour 
force may not be able to meet demands, automating farming tasks may help lighten the load, so to speak.  

In terms of staying competitive, technological advances in agriculture may not be extremely valuable now, 
however, it is a possibility soon. Being a pioneer in an agricultural shift towards autonomous technology 
driven farming could give British Columbia, and even Canada, a competitive edge over regions known for 
agricultural production, like California, Europe and Japan. 

There are currently no precision grape picking solutions on the market. Current work is done by imprecise 
and violent mass-harvesting machines that are too expensive for small to medium sized enterprises. 

7.2.4 Threats 

Our main threats include the speed at which current solutions can harvest grapes, and the possibility of 
drought in the future. 

Despite the damage to the grapes involved in current mechanized picking solutions, they are extremely 
fast and have begun to receive some approval from even the harshest vineyard purists when necessitated.  
 
Some analysts worry that the increase in farmable land brought by climate change in Canada, could be 
offset by water shortages induced by drought. 
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7.3 Appendix C: Milestone Meetings 

Below are meeting summaries and deliverables for the three milestone meetings we planned. Note, the 
decided not to have the originally planned five milestone meetings due to a lack of time. 

7.3.1 Meeting 1 

Summary 

This report describes the projected initial milestones and our completion status for those milestones with 
respect to an autonomous wine crop harvesting robot, VineBot. It is addressed towards the staff of the 
BCIT Electrical Engineering faculty, the BCIT School of Energy and our project mentor, Craig Hennessey. 
Wine grape harvesting can be a rigorous, time-consuming, and labour-intensive task which has already 
begun to be automated. There is also a social push towards organic and sustainably produced products 
and produce, which could be an agricultural automation opportunity. Our senior engineering capstone 
group aims to improve on current systems by developing a robotic vehicle that can monitor and harvest 
grape crops autonomously and selectively. Ideally, this robotic vehicle should be able to navigate a 
vineyard without the need for human intervention, work during all times of the day, and successfully 
detect and harvest wine grape crops. This is going to be accomplished by using cutting-edge vision 
technologies, robotics, and various engineering methods we’ve picked up at BCIT. This report will outline 
what we hoped to accomplish in terms of some initial milestone goals, and how we carried out the 
proposition. We will not however go too-far in depth into technical aspects of the project. In the following 
sections of this report, a summary of our project status will be introduced, including a meeting summary 
for the milestone meeting that took place on Tuesday, January 29th, 2019. A list of planned and actual 
deliverables will then be discussed for the present milestone, leading into some key findings that were 
encountered during the milestone, and a section outline the necessary changes that should be made to 
the project plan. Finally, a conclusion and expectations for the next milestone will be discussed. 

List of Planned and Actual Deliverables for the Milestone 

At this point in time we would have liked to have moved past basic OpenCV processing and have a trained 
machine learning model doing the cluster detection. The vehicle should have also been able to sample its 
surroundings with the LiDAR and know its position relative to the rows. 

Due to our past work during the last term and our hard work this term, we were able to accomplish most 
of the planned deliverables. Shown below in Table 16 are some of the deliverables were planned on 
accomplishing in comparison to what was delivered during the milestone meeting. 

Table 15 – Summary of planned and actual accomplishments 

Planned Deliverable Actually Delivered 

Vision: Machine Learning Vision: Machine Learning 

Vision: Logitech Webcam Vision: Logitech Webcam: Webcam OpenCV with 
YOLO 

Pose Estimation and Mapping: LiDAR Point 
Processing 

Pose Estimation and Mapping: LiDAR Point 
Processing 

Motion Control: uArm Swift Pro 2D Feedback Control Using Reference Signal 
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7.3.2 Meeting 2 

Summary 

On Thursday, April 25th, 2019, our second milestone meeting was conducted. The meeting, held at 
11:30am was attended by both Jeff Bloemink and Craig Hennessey, as well as the VineBot capstone team 
members. During the first part of the meeting, work involving the machine vision and robotic picking 
mechanism was brought forward. There was some trouble with the robotic picking demonstration, due to 
our ongoing work on the picking algorithm, however we were able to demonstrate the cluster detection 
and transformation between the 2D and 3D cameras. Craig Hennessey, after viewing the picking 
demonstration and noticing a snagging problem, suggested that the robotic picking algorithm should first 
center the grape clusters in the frame, and then move in to pick the cluster.  Brayden was not able to 
demonstrate his work on the LiDAR SLAM aspect of the project visually, however, was able to briefly 
describe what he was working on. 

List of Planned and Actual Deliverables for the Milestone 

Shown below in Table 16 are some of the deliverables were planned on accomplishing in comparison to 
what was delivered during the second milestone meeting. 

Table 16 – Summary of planned and actual accomplishments 

Planned Deliverable Actually Delivered 

Vision system based on 2D colour camera and 
depth camera 

Vision system based on 2D colour camera and 
depth camera 

Integration of NVIDIA Jetson image processing 
board 

Integration of NVIDIA Jetson image processing 
board 

Robot arm 2D and depth tracking Robot arm 2D and depth tracking 

LIDAR point processing, SLAM, and path planning LiDAR point processing 

Full system integration Integration of cameras, robot arm, image 
processing board, main control board. 

Mechanical design of camera mount 6th generation of camera mount complete 
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7.3.3 Meeting 3 

Summary 

On Thursday, May 7th, 2019, our third and last milestone meeting was conducted. The meeting, held at 
11:30am was attended by Craig Hennessey and VineBot capstone team members, with our capstone 
coordinator Jeff Bloemink absent. During the first part of the meeting, work involving the stem cutter was 
introduced, including a preliminary version of the stem cutter that wasn’t very good, and then followed by 
the current version of the stem cutter which was a significant improvement. A short demonstration of the 
robotic picking and stem cutting mechanism was brought forward. We also briefly discussed how we 
created some bio-degradable stems. Craig Hennessey, after viewing the cutting demonstration 
commented that although he was impressed with the cutting mechanism, he would most likely stay away 
from using sharp blades as a part of a course project. Brayden was able to demonstrate his work on the 
LiDAR SLAM aspect of the project visually and was able to talk about the PID control system he 
implemented for the drive wheels. 

 

 

  


